sem は,最尤法により構造方程式モデリングを行う。
使用法
sem(ram, S, N, param.names = paste("Param", 1:t, sep = ""), var.names = paste("V", 1:m, sep = ""), fixed.x = NULL, raw=FALSE, debug = FALSE, analytic.gradient = TRUE, warn = FALSE, maxiter = 500, par.size=c('ones', 'startvalues'), refit=TRUE, start.tol=1E-6, ...)
引数
> library(sem) > R.DHP <- readMoments(diag=FALSE, names=c('ROccAsp', 'REdAsp', 'FOccAsp', + 'FEdAsp', 'RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')) 1: .6247 2: .3269 .3669 4: .4216 .3275 .6404 7: .2137 .2742 .1124 .0839 11: .4105 .4043 .2903 .2598 .1839 16: .3240 .4047 .3054 .2786 .0489 .2220 22: .2930 .2407 .4105 .3607 .0186 .1861 .2707 29: .2995 .2863 .5191 .5007 .0782 .3355 .2302 .2950 37: .0760 .0702 .2784 .1988 .1147 .1021 .0931 -.0438 .2087 46: Read 45 items > model.dhp <- specifyModel() 1: RParAsp -> RGenAsp, gam11, NA 2: RIQ -> RGenAsp, gam12, NA 3: RSES -> RGenAsp, gam13, NA 4: FSES -> RGenAsp, gam14, NA 5: RSES -> FGenAsp, gam23, NA 6: FSES -> FGenAsp, gam24, NA 7: FIQ -> FGenAsp, gam25, NA 8: FParAsp -> FGenAsp, gam26, NA 9: FGenAsp -> RGenAsp, beta12, NA 10: RGenAsp -> FGenAsp, beta21, NA 11: RGenAsp -> ROccAsp, NA, 1 12: RGenAsp -> REdAsp, lam21, NA 13: FGenAsp -> FOccAsp, NA, 1 14: FGenAsp -> FEdAsp, lam42, NA 15: RGenAsp <-> RGenAsp, ps11, NA 16: FGenAsp <-> FGenAsp, ps22, NA 17: RGenAsp <-> FGenAsp, ps12, NA 18: ROccAsp <-> ROccAsp, theta1, NA 19: REdAsp <-> REdAsp, theta2, NA 20: FOccAsp <-> FOccAsp, theta3, NA 21: FEdAsp <-> FEdAsp, theta4, NA 22: Read 21 records > sem.dhp <- sem(model.dhp, R.DHP, 329, + fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')) > sem.dhp # print メソッドでは,係数しか表示されない Model Chisquare = 26.69722 Df = 15 gam11 gam12 gam13 gam14 gam23 gam24 0.16122243 0.24964929 0.21840307 0.07183948 0.06188722 0.22886655 gam25 gam26 beta12 beta21 lam21 lam42 0.34903584 0.15953378 0.18423260 0.23547774 1.06267796 0.92972549 ps11 ps22 ps12 theta1 theta2 theta3 0.28098701 0.26383553 -0.02260953 0.41214545 0.33614511 0.31119482 theta4 0.40460363 Iterations = 32 > summary(sem.dhp) # 結果の表示は summary メソッドを使う Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302 Chisquare (null model) = 872 Df = 45 Goodness-of-fit index = 0.98439 Adjusted goodness-of-fit index = 0.94275 RMSEA index = 0.048759 90% CI: (0.014517, 0.078309) Bentler-Bonnett NFI = 0.96938 Tucker-Lewis NNFI = 0.95757 Bentler CFI = 0.98586 SRMR = 0.020204 AIC = 64.697 AICc = 29.157 BIC = 136.82 CAIC = -75.244 Normalized Residuals Min. 1st Qu. Median Mean 3rd Qu. Max. -0.8000 -0.1180 0.0000 -0.0120 0.0397 1.5700 R-square for Endogenous Variables RGenAsp FGenAsp ROccAsp REdAsp FOccAsp FEdAsp 0.5220 0.6170 0.5879 0.6639 0.6888 0.5954 Parameter Estimates Estimate Std Error z value Pr(>|z|) gam11 0.161222 0.038792 4.15604 3.2381e-05 RGenAsp <--- RParAsp gam12 0.249649 0.043981 5.67631 1.3763e-08 RGenAsp <--- RIQ gam13 0.218403 0.044197 4.94154 7.7508e-07 RGenAsp <--- RSES gam14 0.071839 0.049707 1.44526 1.4838e-01 RGenAsp <--- FSES gam23 0.061887 0.051720 1.19659 2.3147e-01 FGenAsp <--- RSES gam24 0.228867 0.044162 5.18241 2.1904e-07 FGenAsp <--- FSES gam25 0.349036 0.045290 7.70672 1.2909e-14 FGenAsp <--- FIQ gam26 0.159534 0.038826 4.10895 3.9746e-05 FGenAsp <--- FParAsp beta12 0.184233 0.094888 1.94158 5.2188e-02 RGenAsp <--- FGenAsp beta21 0.235478 0.119389 1.97235 4.8570e-02 FGenAsp <--- RGenAsp lam21 1.062678 0.090139 11.78937 4.4286e-32 REdAsp <--- RGenAsp lam42 0.929725 0.070281 13.22868 5.9934e-40 FEdAsp <--- FGenAsp ps11 0.280987 0.046232 6.07782 1.2183e-09 RGenAsp <--> RGenAsp ps22 0.263836 0.044667 5.90674 3.4895e-09 FGenAsp <--> FGenAsp ps12 -0.022610 0.051194 -0.44164 6.5875e-01 FGenAsp <--> RGenAsp theta1 0.412145 0.051225 8.04584 8.5654e-16 ROccAsp <--> ROccAsp theta2 0.336145 0.052100 6.45193 1.1043e-10 REdAsp <--> REdAsp theta3 0.311195 0.045927 6.77584 1.2369e-11 FOccAsp <--> FOccAsp theta4 0.404604 0.046184 8.76062 1.9418e-18 FEdAsp <--> FEdAsp Iterations = 32